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Identification of Martensite Bands in Dual-Phase Steels:
A Deep Learning Object Detection Approach Using Faster
Region-Based-Convolutional Neural Network

Niklas Fehlemann,* Ana Lia Suarez Aguilera, Stefan Sandfeld, Felix Bexter,
Maximilian Neite, David Lenz, Markus Kénemann, and Sebastian Miinstermann

Martensite banding in dual-phase steels is an important research topic in the field of
materials design, since it affects the local damage properties of the material largely.
Therefore, it is necessary to quantify the amount and the geometrical details of the
bands in a specific microstructure, for example, for simulative approaches. A
convolutional neural network is trained on manually labeled scanning electron
microscopy images of DP800 steel and a subsequent effort is made to transfer these
results to statistical quantities for the generation of representative volume elements
(RVE). As exact geometric definitions of martensite bands in 2D are difficult, the
influence of different band definitions is investigated. The result of the training
shows good prediction accuracy but is strongly dependent on the chosen band
definition and the underlying human bias from the labeling process. A statistical
analysis using cross-validation shows that reliable results can already be achieved
with only small datasets of around 50-100 training images due to the transfer
learning approach. This is an important outcome as it eliminates the need to

research field of process—(micro)structure—
property—performance relations. Increasingly,
machine learning methods are also being used
here, for example, to accelerate material
design,M to link grain sizes and mechanical
properties,” or to describe dislocation net-
works.”) The specific microstructure has a
big influence on basic parameters such as
the toughness or the yield stress but even more
on local properties on the microscale like the
damage initiation and accumulation or the
fatigue properties.”) For well.known steels
such as dual-phase (DP) steels, the relations
between microstructure and damage prop-
erties have already been studied in a vast
number of publications, see, for example,
Piitz et all® for investigations about the

generate a large dataset which can only be obtained from time-consuming

microscopy work and manual labeling of the images.

1. Introduction

The drive for evermore efficient construction, design and layout of
components, buildings, and vehicles also affects materials science
to a large extent. For some time now, research has focused on the
adjustment and tailoring of microstructure in the emerging
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damage tolerance of DP800 and DP1000,
Tasan et al.l”! regarding simulative experi-
mental studies about stress and strain parti-
oning in DP800, or Heibel etal.” for studies
on the edge crack sensitivity of different DP
and complex phase steels. Experimentally, however, it is almost
impossible to quantify the specific effects of individual microstruc-
ture parameters (e.g., grain size or phase ratio), since the modifi-
cation of a particular parameter normally also modifies some or all
of the other parameters.” In order to overcome this problem, sim-
ulation-based approaches using virtual representations of the
microstructure are suitable. A commonly used tool for this kind
of analysis is the so called representative volume element (RVE).
These are sections of the volume, whose specific properties are of a
nature that is representative of the behavior of the aggregate mate-
rial. For this, the following scale separation must apply:
Linicro € Live <€ Linacro™” Since the microscopic characteristic
length depends strongly on the material, the required size of
the RVE also depends on the properties of the material.['!

RVE are distinguished from real structure models of micro-
structure. These kinds of models can be generated directly from
microstructure images obtained, for example, from light optical
microscopy (LOM) or electron backscatter diffraction (EBSD).
They are for instance used by Tasan et al.'?. In this case, the
LOM/EBSD image is directly used as the 2D model to simulate
the underlying mechanical properties of the experimentally
observed microstructure. In contrast to that, the different param-
eters of the microstructure (grain size, orientations, phase ratios)
can be represented by some kinds of distribution functions
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which are then used to generate input to build so-called statisti-
cally RVEs (S-RVE), which rely on some kinds of averaged quan-
tities (e.g., used by Liu et AL™* and Vajaragupta et al.**)). While
models build from the real microstructure might be slightly
more precise in displaying the exact morphology of the constit-
uents, a statistical description of the microstructure makes it eas-
ier to vary specific features of the microstructure. This is
inevitable for the use of RVEs for microstructure design and
the quantification of the effects of single constituents of the
microstructure.

Various open-source software packages can be used to gener-
ate RVE (so-called RVE generator). These include DREAM.3D, ")
Neper,'® or Kanapy,'”! utilizing different approaches to build
the microstructure model and map different properties.
Recently, an RVE generator has been developed in the authors’
group, which uses discrete representations of ellipsoids to rep-
resent grains. For more details on this, the reader is referred
to Henrich et al.". In this approach, the focus was put on
the correct representation of the geometrical description of
the microstructural constituents. Therefore, ellipsoids were cho-
sen as a mapping for the grains, which are generally better suited
as a representation for the grains than spheres, since geometri-
cally preferred directions (e.g., due to rolling processes) can be
Dbetter described. In order to map the distributions of the neces-
sary grain parameters (e.g., semiaxes of the ellipsoids and
inclination angle of the ellipsoids), a log-normal or Gamma dis-
tribution can be fit to the individual data series.™®! However, pre-
vious studies have shown that there are interdependencies
between the individual grain parameters that cannot be repre-
sented by univariate distribution functions. Therefore, a so-called
“Wasserstein generative adversarial network” is used in the RVE
generator, which is able to serve as a multivariate distribution
function for synthetic grains. More details about this approach
have been described in previous studies.*®*"! This approach is
suitable for ellipsoidal or sphere-like structures such as ferrite
grains, martensite islands, voids, inclusions, etc., but not for more
complicated morphologies such as martensite or pearlite bands.

Martensite banding, especially in DP steels, is an active
research topic, since bands of a secondary hard phase lead to
numerous changes in the local properties, most of which influ-
ence the local properties in a negative way.*2?*! However, to our
knowledge, there is no method to describe the individual bands
of a microstructure quantitatively, while taking into account
the geometric features of the bands. While there are some
approaches to quantify the amount of banding in a microstruc-
ture,**?*] this description is not sufficient for the representation
in S-RVE: Only if bands and islands can be described indepen-
dently from each other and the rest of the microstructure, the
individual effect of the bands on the microstructure and the
mechanical properties can be analyzed. However, this leads to
the question of how exactly bands and other representations
(e.g., martensite in the form of islands) of the same phase
can be distinguished. In dual-phase steels, where the microstruc-
ture has a generally elongated structure due to the rolling
process, this question is not trivial to answer and requires
time-consuming and manual classifications by experts for the
respective material.

One way to accelerate such a problem is to use machine learn-
ing methods, especially from the field of supervised learning.
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Supervised learning is already widely used and successfully
applied in the field of material characterization, for example,
for the classification of damage mechanisms,?**”! grain struc-
tures,?® or microstructural constituents.?”>*” The advantage is
that after experts have manually created a dataset for training,
the model can automatically process new data without human
intervention.

In this study, we present a machine learning approach for
automatic detection and localization of martensite bands in scan-
ning electron microscopy (SEM) images from a DP800 and the
ensuing transfer to statistical quantities for RVE generation. For
this purpose, a state-of-the-art object detection algorithm, the
Faster region-based-R-convolutional neural network (CNN), is
implemented and used. We show that this algorithm is able to
learn and subsequently apply different definitions of martensite
bands even when only relatively few data is available. The article
is structured as follows. Section 2 describes two different strategies
to separate the bands from the islands (so-called labeling) to gen-
erate training data. In Section 3 the used network architecture is
explained. In Section 4, the results of the two different definitions
are presented. Section 5 contains a discussion and comparison of
the results. In Section 6, we show subsequently how the detected
bands are transferred into a statistical representation for the use in
RVE and which different peculiarities result from the varying
definitions. Thus, we provide an end-to-end approach for data
generation for RVE, ranging from the band detection to the
statistical representation.

2. Labeling Approach for Martensite Bands

The material examined in this study is a commercial dual-phase
steel DP800. The material has a phase fraction of martensite of
around 32% and shows a significant martensite banding of the
microstructure (oriented along the rolling direction RD]). Other
phases such as bainite play only a very minor role for important
properties of this specific steel and are therefore omitted from
this study. The yield stress is 460 MPa, the ultimate tensile
strength has a value of around 823 MPa, and the fracture strain
is at 21%. There is some scatter in the fracture strain for tensile
loading, with fracture strains at 19.84, 19.6, and 23.5% for three
tensile tests. In a previous study, the pronounced banding was
found responsible for this scatter in the fracture strain.[®
Figure 1a shows a panoramic SEM image of the microstructure
with a height of 320 pm and a width of 1153 pm. The data used in
this study was originally generated for another study, where the
effect of local strains and stress triaxiality on the void nucleation
and evolution of this DP800 was investigated.**! The image was
taken by means of a SEM-Inlens-Detector, which allows a very
clear delimitation of martensite and ferrite. The image was
originally taken as a combination of several 100 pm x 100 pm
images, which were then stitched together using an algorithm.
The resolution of the original images corresponds to 3072 pixels
per 100 pm.BY

The x-axis is oriented along the RD and the y-axis along the
sheet normal (RD x SN). A closer look on an exemplary
50 pm x 50 pm excerpt (Figure 1b) from the panoramic SEM
image reveals that the banding and the clear preferred direction
along the RD comes from elongated islands and more
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Figure 1. SEM images of DP800 steels. a) SEM-Inlens image of DP800 steel. Martensite shown in white, ferrite in black. The size is 1153 pm x 320 pm.

b) 50 ym x 50 pm excerpt from the microstructure.

pronounced bands with partially blocky dimensions, extending
over a larger area (in this example over the whole 50 um).

Images taken at 90° to those shown in Figure 1 (transverse
direction x SN) show a very similar microstructure. From this,
it can be concluded that the (larger) bands are more likely to
be 3D “plates”, which have a greater extension in the RD and
in the transverse direction.

For the construction of S-RVE, the statistics of the elongated
islands are captured using ellipses or ellipsoids, but for the
blocky bands/plates case these are unsuitable. The representa-
tion of a band as a centered oblate ellipsoid in the RVE cannot
accurately represent the geometric shape of a band/plate, for
example, enclosed ferrite grains cannot be represented in this
way. In addition, a large ellipsoid would lead to a decrease in
the thickness of the band from the center of the RVE to the edges.
Therefore, the bands must first be separated from the island in
order to then be displayed in the RVE. Thus, it is necessary to
define what is a band and what therefore needs a special treat-
ment in the RVE generation process and what can be represented
with the standard ellipsoids. To achieve this, different definitions
were made to label the bands according to different criteria. With
this, training data for the object detection approach described in
the next section is generated. To our knowledge, there is neither
a benchmark nor “right” or “wrong” to the question “what is a
martensite band?” In general, the answer to this question
depends on the goal of the investigations (i.e., the accurate repre-
sentation of the martensitic morphology in S-RVE and the inves-
tigation of the influence of the bands on the damage behavior).

Hence, this study examines two different definitions of bands
and tests and discusses them in terms of usability. The goal is to
find out whether an object detection approach is capable of
handling different definitions of martensite bands. The defini-
tions are applied to 50 pm x 50 pm excerpts of the microstruc-
ture, with the size chosen accordingly to the edge length of
the RVE, which has edge lengths in the range of 30-60 pm.
During the labeling process we mark an area as a band by draw-
ing a rectangle (so called bounding box) around the area, enclos-
ing the band. This was done using the “Image Labeler app” from
the “Image Processing and Computer Vision Toolbox” in
MATLAB.*?
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The following two definitions were used to label all images:
1) Definition 1 (Def 1): A band is an elongated area of martensite
that extends from the left side of the image to the right side of
the image. The bands should have no or very small breaks
(<10 pixels). Usually, the bands are parallel to the x-axis, but
slight deviations (5°) are allowed. The height of the band does
not need to be constant throughout the length, so the band
may be very thin at some points. Bands also include blocks of
martensite that have enclosed areas of ferrite, as well as curved
or branched sequences. 2) Definition 2 (Def 2): As opposed to
Def 1, bands can be shorter than the width of the image.
Breaks of the band are allowed if the band-like structure remains
“recognizable” for a human with the respective domain knowl-
edge and experience. Contrary to the first definition, the bands
should have an almost constant height and be parallel to the x-
axis. The bands must be different from the rest of martensite
islands surrounding the band. Very thin band-like structures
are not labeled as bands.

These definitions are no strict, mathematical definitions but
are rather intended as guidelines for a human expert for manual
labeling of martensite bands. In doing so, a certain degree of
human bias will automatically be introduced into the data.
The effects of this will be discussed in Section 5. Additionally,
both definitions implicitly assume that all images have the same
size and are not scaled. Figure 2 shows the resulting bounding
boxes for both definitions. Here, it can be seen that Def 1 focuses
on the coherence of the martensite structure across the entire
image width and all associated side arms. In contrast, Def 2
focuses more on the blockiness of the martensite. The constant
thickness is more important than the length and possible side
arms or branched sequences. In both definitions, the martensite
content in the band area is significantly increased compared to
the average value of the material. According to the definitions,
the two structures above the big band at ~1/3 of the height
are labeled as bands according to Def 1 because they span over
the whole image, but not according to Def 2, since they to not
show a constant height and are relatively thin.

The panoramic SEM-Inlens (Figure 1) image is split into 138
excerpts. For Def 1, 97 bands were labeled in 69 of the 138
images. For Def 2, 51 bands were labeled in 40 of the 138 images,
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Figure 2. Exemplary images labeled according to Def 1 and Def 2. a) Comparison between Def 1 (left) and Def 2 (right). The two structures above the
pronounced bands do not show a complete horizontal alignment and are therefore not labeled according to Def 2. b) The comparison between Def 1 (left)
and Def 2 (right). The banded structure on the lower half of the image does not stretch over the whole image and is therefore not labeled according to Def 1.

the remaining images without bands are not used. These data is
used as the ground truth. The nearly doubled number of instan-
ces in Def. 1 as compared to Def 2 can indicate that Def 2 is a
more strict definition.

In addition to the SEM-Inlens images, labeling experiments were
also performed on image from a standard SE detector. The problem
arises that on these images martensite and ferrite are only well dis-
tinguishable on the basis of the grain boundaries and there is no
clear color contrast. This complicates both the labeling and the auto-
matic binarization, which is important for the separation of mar-
tensite and ferrite for the generation of RVE input data.
Therefore, we stick to the Inlens images for all further analysis.

3. Object Detection

3.1. Theoretical Foundations

This article deals with the localization and classification of
objects in an image (even though the classification is somewhat
needless in our case, since there are only bands and no other
components to be recognized). There are two main ways to do
this: image segmentation and object detection. Currently, all
state-of-the-art algorithms of both model classes are based on
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deep learning (DL) methods when processing images or other
grid-like data (e.g., videos or time series, a special form of a mul-
tilayer neural network is used, the so-called CNN). For a detailed
introduction into CNNs and the convolutional operation, the
reader is referred to Goodfellow et al.*®. For image segmenta-
tion and object detection tasks, CNNs show superior results
as compared to many classical image analysis algorithms and rec-
ipes, making them the basis for most of the state-of-the-art image
analysis methods.

Image segmentation for a binary classification task combines
the pixels belonging to an object in an image or a volume,
segmenting them from the background. A well-known
network architecture for such tasks is the U-Net, developed by
Ronneberger et al.**. In contrast to that, object detection deals
with the localization and subsequent classification of objects in
an image by drawing a bounding box around the object.** A dis-
advantage of object detection is that the exact shape of the object
cannot be detected. In this work, however, an object detection
approach was chosen, since the exact shape of the bands is
not crucial for the representation in the RVE (e.g., due to lower
resolutions of the RVE compared to the image), and complete
masks with all shapes introduce additional, unwanted complexity
into the labeling problem.
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For object detection algorithms, a distinction is made between
two-stage models, which have separate models for extracting the
so-called region proposals (RPs) (regions in an image where
objects may or may not lie) and classifying the objects and second
one-stage models, which skip the RPs.**! Popular one-stage
architectures are presented in the study by Redmon et al.*®
and Lin et al.’”). The benefit of one-stage models is the simpler
architecture and the faster prediction speed.’”! Since the predic-
tion speed is not crucial for the detection of microstructural
features (since, unlike e.g., autonomous driving, this is not a
real-time application), a two-stage architecture was chosen.

A popular family of two-stage algorithms is the R-CNN model
family, where R-CNN stands for “region-based convolutional
neural networks.” The family consists of three subsequent mod-
els: the R-CNN from 2014,7® the Fast R-CNN,*! and the Faster
R-CNN,*% both of which were published in 2015.

The initial architecture is the R-CNN, proposed by Girshick
et al.®®], This architecture is divided into three parts. In the first
step, a selective search (SS) algorithm is used to generate 2000
RP for each image. A RP is a location from the image, where an
object may or may not lie. These proposals are resized to squares
and subsequently fed to a CNN, which serves as a feature extrac-
tor and gives a feature vector with 4096 entries to a support vector
machine algorithm, which classifies the objects and calculates
the bounding box (given by the four corner coordinates).
However, different problems arise from this architecture: At
first, it is extremely inefficient in terms of time and storage space.
Since features are computed and stored for each RP, the R-CNN
with very deep CNN architectures as a backbone (up to several
hundred layers) takes a very long time for training and predic-
tions. In addition, several hundred gigabytes of memory are
required.’” Furthermore, the training process consists of several
steps (CNN training, support vector machine training for classi-
fication, and support vector machine training for bounding box
regression), which are also inefficient and prohibit training in
one single loop.>”!

To deal with this drawbacks, the Fast R-CNN was developed.
With this, the time and memory problem is contained by no lon-
ger computing a feature map for each of the 2000 RPs, but only
once for the entire image. Then the RPs are computed directly
from the feature map. This saves both memory and time by
reducing unnecessary computations.??)

The next design improvement, the Faster R-CNN (Figure 3),
eliminates the last bottleneck, which is the generation of RPs
using SS. This is illustrated by the fact that, if the time spent

Conv. Layer

Figure 3. Schematic layout of the Faster R-CNN.
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for the generation of RPs is ignored in Fast R-CNN, almost
real-time object detection is already possible.*”) To get closer
to true real-time object detection, the SS is replaced by the so-
called RP network in the Faster R-CNN. This RP network shares
the convolutional layer with the detection network, making the
generation of RPs very efficient.*” In Figure 3 it becomes clear
that there is only one single fully convolutional layer in the Faster
R-CNN. This CNN with shared computational layers can be
trained with the so-called approximate joint training. This train-
ing style can speed up the training by up to 50%, compared to
other training styles."*"!

The Faster R-CNN is already being used in materials science,
for example, for the detection of defects on the surface of steel
sheets!*!! or in weld seams.[*” However, these papers are more
concerned with technical modifications to the structure of the
Faster R-CNN and not with the effects of different labeling
approaches on the statistical properties of the microstructural
components to be detected. Here, an effort is made to use the
Faster R-CNN in a setting were the properties to detect are
not exactly defined.

3.2. Implementation Details

For this study, the Faster R-CNN is implemented in python using
PyTorch version 1.11 and torchvision version 0.12.1*! With the
PyTorch implementation of the model, we use a pretrained ver-
sion of the network with a ResNet50-backbone (for more details
on the ResNet neural network architecture for computer vision,
the reader is referred to He et al.**)). This significantly speeds up
training and allows good predictions to be made on relatively few
images. This is an advantage in that the generation of good qual-
ity SEM or EBSD images with reproducible properties in high
quantities is much more time-consuming than, for example,
the generation of a large quantity of simple finite-element sim-
ulations. The concept of only fine tuning the weights of the most
specialized layers of a pretrained model is called transfer learning
and additionally accelerated our training process significantly.
During the training, the model predicts bounding boxes with
a so-called confidence score. The bounding boxes are recorded
if the confidence score is higher than 0.8. All bounding boxes
are stored in the format (X0, ¥max> Ymin» Ymax) a0d the images
were resized from 1600 x 1600 pixels to 512 x 512 pixels. The
smaller size increases the training speed and prevents problems
with the RAM during training. See Section 4 for a comparison of
the results of different image sizes.

Regions of
Interest Pooling

Classifier

Region proposal network

i Bounding box
regression
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As introduced in Section 2, two definitions were evaluated in
this article. For both, the detector was trained for 50 epochs. This
training was run using a NVIDIA V100-SXM2 GPU provided by
the RWTH High Performance Computing Cluster and takes ~75
min for the 69 images of Def 1 and 45 min for the 40 images of
Def 2. To improve the small size of the training dataset, data aug-
mentation techniques were applied to the images. For this, the
Albumentations-Library!** was used. We evaluated different aug-
mentation techniques and list the best augmentations below
(p = xy% denotes the percentage of the training instance to
which the augmentation was applied): 1) Flipping (p = 20%):
flips image vertically, horizontally, or in both ways; 2) Affine
transformation (p = 50%): applies translation, shearing, and
rotation to the image (in defined boundaries); 3) MotionBlur
(p = 20%): applies motion blurring to the image; and 4) Blur
(p = 10%): blurs image with random sized kernel

The choice of augmentation methods and respective parame-
ter ranges resulted from the fact that the microscopy images were
mainly aligned such that bands are always horizontal. Therefore,
rotational transformation of the images with arbitrary angles is
not physically reasonable and was excluded.

The original training dataset contains 69 (Def 1) and 51 bands
(Def 2), which is, by comparison with training datasets, typically
used in computer science applications an extremely small num-
ber. In order to check whether the results strongly depend on the
selected train-test split and whether overfitting might take place,
a fivefold cross-validation was performed. In a k-fold cross-
validation, the dataset is divided into k equally large subsets.
Each of these k parts is then used once as a test dataset, while
the remaining k — 1 parts are used as training data. Therefore,
in a k-fold cross-validation, k trainings are performed and then
statistically analyzed. Due to the pretrained backbone, this is pos-
sible in a reasonable time.

Note that cross-validation is only used to detect certain prob-
lems in the training data; the final model is then trained and eval-
uated separately based on all available data.

3.3. Evaluation Metrics

To quantify the success of the trained models, the results are
evaluated based on the “recall” and “precision” metrics. These
are defined as follows

T+
Recall = W (1)
T+
Precision = T+4—|—F+ (2)

where T means true positive (band correctly located and classi-
fied as band), F' is false positive (fraction of the image incor-
rectly defined as band by the model), and F~ is the false
negative (missed to identify image fraction as band). Another
metric that is often used with the recall is the specificity

T,T—m. However, this cannot be clearly calculated here as there
is no definition for true negatives. Theoretically, any island or
martensite clustering that is correctly identified as background
(everything that is not martensite band counts as background

in this work, i.e., ferrite matrix, martensite islands, and possible
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pores) is considered a true negative, but it is difficult to draw the
line here, so this value is not used in this study. A prediction is
assumed to be true positive if the predicted and the ground truth
bounding boxes match to at least some fractional value. For this
purpose, the so-called Intersection-over-Union (IoU) threshold is
used. It is defined according to the Equation (3).

_ Areaof Overlap

IoU 3)

"~ Areaof Union

In this equation, the Area of Overlap is the common area
between the predicted and the ground truth bounding box.
The Area of Union is the area enclosed by both boxes together.
In general, a true positive is recorded if the loU is greater than
0.5. In this study, the detectors are evaluated at IoU scores of 0.5
and 0.75. The precision and recall scores are calculated for both
thresholds and the mean value over test set is used to evaluate the
detector. As an additional metric, we introduce the “accuracy”,
which is simply the mean of recall and precision.

4. Model Results

4.1. Results of the Cross-Validation for Def 1

The results for the fivefold cross-validation using training instan-
ces according to Def 1 are shown in Figure 4. Here, the accuracy
(see Section 3.3) is shown for the respective validation part of the
dataset, without data augmentation (right part, Figure 4b) and
with the data augmentation (left part, Figure 4a). The different
lines indicate the different folds of the cross-validation and the
mean of all folds is shown with the dashed black line. It becomes
clear that —although there is some scatter in the curves—all five
folds, that is, all validation dataset, behave approximately in the
same way. The shapes of the curves, as well as the final accuracy
level, are approximately similar for both the data with augmen-
tation and without augmentations. The only outliers are two folds
for the training without data augmentations, which tend to fall
again during the training process. This indicates also that the
dataset without data augmentation are statistically not (suffi-
ciently) representative; hence, data augmentation is important
in this case.

Slightly different results can be seen for the training parts of
the dataset (Figure 5). When comparing the results without
data augmentation (right side of Figure 4 and 5), it becomes
clear that without data augmentation the dataset is too small
such that the trained model suffers from overfitting. While
the training curves increase constantly and are almost all at
100% accuracy from epoch 40 on, the validation curves are only
at around 75% accuracy, with the already described drop for
two particular folds. For the training with data augmentation
(left part of Figure 4 and 5), no such behavior is evident. All
curve reach values at around 80% accuracy, with slightly less
oscillations in the training curves, due to the higher number
of samples.

Table 1 shows the summarized results for the cross-validation.
For a more complete analysis, we also analyzed the effect of dif-
ferent image resolutions on the prediction quality: The chosen
sizes were 100 x 100 (resulting in a resolution of 2, meaning that
1pm is equal to 2pixel), 512 x 512 (the standard size), and
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Figure 4. Accuracies of predictions for the validation datasets during cross-validation for Def 1. The different lines with labels 1-5 indicate the five
different folds of the cross-validation, the dashed black line is the mean computed over all five folds. a) Accuracies using data augmentation.

b) Accuracies without data augmentation.
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Figure 5. Accuracies of predictions for the training datasets during cross-validation for Def 1. The different lines with labels 1-5 indicate the five different
folds of the cross-validation, the dashed black line is the mean computed over all five folds. a) Accuracies using data augmentation. b) Accuracies without

data augmentation.

Table 1. Effect of different image resolutions and sizes on the cross-
validation results. The mean over the five folds is shown for the
validation set. All values in percent, image side length in pixel.

Image side length [px] Precision Recall Accuracy
100 72.78 72.29 72.54
512 79.23 75.60 77.75
1024 71.03 78.64 74.84

1024 x 1024. From the results it can be deduced that even a very
low image resolution of only 2 leads to good results. The image
size of 512 x 512 has the best precision and accuracy, while the
image size of 1024 has the highest Recall. These results show
that an image size of 512 x 512 pixels has the highest values

steel research int. 2023, 94, 2200836 2200836 (7 of 13)

in the overall accuracy, so this size is used for further analysis,
although the differences are not serious.

4.2. Results of the Cross-Validation for Def 2

As in the previous section, the results of the cross-validation are
shown for Def 2. These can be seen in Figure 7. In this figure,
comparable results to the results for Def 1 can be seen. There is
only minor scatter between the different folds and no unexpected
progressions in the curves can be observed. For the results with
respect to the not-augmented data (Figure 7b), there is a sharp
drop of the accuracy for one of the folds down to 60% accuracy.
From both of the curves, it becomes clear that the results are
better on average than the results of Def 1, with accuracy values
oscillating more around 90% than 80%.

© 2023 The Authors. Steel Research International published by Wiley-VCH GmbH
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As described in the previous section, the model for Def 1 shows
problems with overfitting. While comparing the accuracy values
for the validation and training dataset, without data augmentation
for Def 2 (Figure 6b and 7b), a similar behavior is observed, with
the values for the training sets being extremely close to 100% from
epoch 30 on. Although, the difference between the validation and
the training values is not that pronounced compared to Def 1, it
indicates less problematic overfitting for Def 2.

Table 2 shows the mean results for the cross validation of Def
2. Similar results as for Def 1 can be observed. Again, the accu-
racy is highest at an image size of 512 x 512, but the differences
are very small (less than one percentage point). Overall, the
results shown in Table 1 and 2 confirm the basic assumption
of an image size of 512 x 512 as good, there is no other image
size that clearly produces better results.
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Table 2. Effect of different image resolutions and sizes on the cross-
validation results for Def 2. The mean over the five folds is shown for
the validation set. All values in percent, image side length in pixel.

Image side length Precision Recall Accuracy
100 91.25 93.33 92.29
512 93.75 93.75 93.75
1024 95.00 90.00 92.25

4.3. Results for the Final Model (Def 1 and 2)

Due to the evidence of overfitting, we discarded the results without
data augmentations and consider only the results with data aug-
mentation for a more detailed analysis of both different definitions.
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Figure 6. Accuracies of predictions for the validation datasets during cross-validation for Def 2. The different lines with labels 1-5 indicate the five
different folds of the cross-validation, the dashed black line is the mean computed over all five folds. a) Accuracies using data augmentation.

b) Accuracies without data augmentation.
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Figure 7. Accuracies of predictions for the training datasets during cross-validation for Def 2. The different lines with labels 1-5 indicate the five different
folds of the cross-validation, the dashed black line is the mean computed over all five folds. a) Accuracies using data augmentation. b) Accuracies without

data augmentation.
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For the final model, the respective dataset is split into a
75/25% train test split. The resulting metrics for Def 1 are shown
in Table 3. The results are calculated for IoU threshold of 0.5 and
0.75, respectively. The accuracy values are in good agreement
with the last values from the curves from the cross-validation
in Figure 4a, indicating no unexpected abnormal behavior in
the final model.

Both rows of Table 3 show that the recall for this model is
higher than the precision, about 12 percentage points for both
thresholds. This indicates that the model generates too many
false positives for this dataset but recognizes the majority of
the correct bands (at least for IoU threshold of 0.5). Thus, the
recall is relatively high. For the IoU threshold of 0.75, similar

Table 3. Evaluation metrics for the final model for Def 1. The metrics are
calculated from the final model w.r.t. to the test set. All values in percent.

Threshold Precision Recall Accuracy
0.5 68.52 80.56 74.54
0.75 54.63 66.67 60.65

www.steel-research.de

results are observed, with all three metrics around 14 percentage
points lower than for an IoU threshold of 0.5. The precision of
only around 55% indicates that there are nearly as many false
positives than true positives at this threshold.

In Figure 8, some examples from the test dataset for Def 1 are
shown. The ground truth bounding boxes are drawn in light
blue, while the predicted boxes are drawn in orange. For a very
pronounced banded structure and only small martensite islands
like in Figure 8a, the prediction is almost perfect. All metrics are
1, even at a higher IoU threshold of 0.75. For excerpts that are a
bit more indistinct in terms of the martensite morphology
(Figure 8b—d), the prediction quality differs: For the excerpt in
Figure 8b, the band in the upper half of the image is correctly
identified (At IoU 0.5, at IoU 0.75, the difference is to big). In
addition to that, a big bounding box is predicted in the lower half
of the image, enclosing a banded structure, which was not
labeled according to Def 1, because it did not span completely
over the whole image. For the excerpts in Figure 8c,d, it is clear
that the bounding boxes at the top of the images are basically
correctly placed, but incorrectly sized. In Figure 8c, the predic-
tion is much bigger than the real bounding box, enclosing more

Figure 8. Exemplary results for Def 1. The predicted bounding boxes are colored in orange and the ground truth boxes in blue. Metrics are denoted for
each picture in the subcaptions for an loU threshold of 0.5. a) Very pronounced band is detected without problems (Prec=1, Rec=1, Acc=1). b) False
positive in the lower half of the image (Prec=0.5, Rec=1, Acc=0.75). c) Bounding box predicted at the right location (upper side of the image) but with
wrong dimensions (Prec=0.5, Rec=0.5, Acc=0.5). d) Bounding box predicted at the right location (upper side of the image) but with wrong dimensions
(Prec=0.0, Rec=0.0, Acc=0.0).
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of the morphology in the upper 1/3 of the image than that which
was labeled. In Figure 8d, the two ground truth boxes are wrongly
divided by the prediction, leading to precision and recall of 0.0 in
this excerpt. Additionally, there is a false positive in this excerpt,
which is, similar to 8b, a banded structure which does not range
over the whole image.

In order to have a better comparability with the results of Def
1, we also trained the final mode for Def 2 with data augmenta-
tion. This is supported by the fact that for Def 2 the results with-
out data augmentation show slight signs of undesirable behavior,
for example, the aforementioned sharp drop for one of the folds.
For the final model, a 75/25% train test split is also applied. The
results are displayed in Table 4. It becomes clear that the metrics
are overall better for Def 2 than for Def 1 and the model is able to
produce very accurate predictions for the test dataset. The results
are also well in line with the cross-validation curves in Figure 6a,
where the individual folds are in the 90-100% range at epoch 50.
With the high values for all of the three metrics, we chose to
omit, showing exemplary images for this definition. For both
thresholds, only in one image the predictions are incorrect, in
all others all metrics are at 100%

5. Comparison and Discussion

The results show that our proposed object detection approach is
capable of separating martensite bands from the from the rest of
the martensitic morphology in a good manner, with accuracy val-
ues around 75-100%. Also, the cross-validation shows that the
number of samples in our datasets seems to be sufficient and
there is no evidence for bigger problems with the scarcity of
the data (which would, for example, be indicated by extremely
differing curves for the folds in Figure 4 and 6). This is a big
advantage of the chosen transfer learning procedure (using a pre-
trained ResNet in the Faster R-CNN), enabling us to work with a
relatively small amount of data, which is enhanced by data aug-
mentation techniques. Given that images from costly electron
microscopy are needed to distinguish martensite and ferrite
properly, the small amount of data required is a clear advantage
of our approach.

However, the prediction quality differs strongly between the
two definitions, even with the same configuration of hyperpara-
meters, like the chosen augmentations, epochs, batch size, etc.
While Def 2 is nearly perfectly mapped at around 100% with no
big differences between precision and recall, there is only a pre-
diction accuracy of around 75% of the model with respect to Def
1. Also, this model shows a skew in the metrics toward recall over
precision, indicating more false positives than false negatives.
Additionally, the dropoff in the prediction metrics from an
IoU threshold of 0.5 to one of 0.75 is higher for Def 1 (around
14 percentage points for all three metrics) than for Def 2 (10

Table 4. Evaluation metrics for the final model for Def 2. The metrics are
calculated from the final model w.r.t. to the test set. All values in percent.

Threshold Precision Recall Accuracy
0.5 100.0 95.0 97.5
0.75 90.0 90.0 90.0

steel research int. 2023, 94, 2200836 2200836 (10 of 13)
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percentage points for precision and 5 percentage points for recall).
This shows overall more exact placed boxes for Def 2 than for Def 1.

Since these differences in the results can barely be explained
by “technical” reasons (the basic structure of the two final models
is, as already mentioned, the same), the differences can most
likely be explained with some kind of human bias which is intro-
duced into the data during the labeling process. As mentioned in
Section 2, the definitions are only guidelines for a human expert
to separate the bands from the rest of the microstructure and not
a strict and universally valid criterion. Therefore, it seems reason-
able that all or some of the rules of Def 1 tend to introduce more
inconsistencies in the respective dataset than Def 2. An addi-
tional hint toward these inconsistencies is the more pronounced
overfitting for Def 1, observable in Figure 4 and 5. Although it is
not clear which part of Def 1 is introducing more of the incon-
sistency into the dataset, some of it can be traced back to the “con-
tinuity condition”, the rule that the bands should range over the
whole image. These conditions, although being the most objec-
tive criterion in both definitions, can probably be problematic, as
shown in Figure 8b,d: In both of images, a false positive is gen-
erated by labeling a structure with banded shapes which does not
range over the whole image and was therefore not labeled accord-
ing to Def 1. It is evident that the exclusion of such structures is
not comprehensible or not learnable for the model. Additional
inconsistencies can be suspected from the box dimensions of
the predictions in Figure 8c,d. In these images, the model can
find the general position of the band(s) but not the correct dimen-
sions or allocations of the bands.

In contrast to this, the final model for Def 2 does not tend to
show these kinds of inconsistencies. One reason can be that Def
2 is stricter than Def 1, which is also underlined by the fact that
there are nearly twice as much bands for the first definition (97
vs. 51). With this, it seems that a rather objective criterion like the
“continuity condition” is not necessary an indicator for more
strict labeling. In general, it can be concluded that the “blockiness”
from the latter definition is easier to learn criterion than the “con-
tinuity condition”.

6. Generating Data for Representative Volume
Elements

(Note: For more detailed information about the DRAGen-RVE
Generator, which is used for the creation of the shown RVE,
the reader is referred to ref. [18]. The general procedure of
the band generation is already described in Piitz et al.,??l and
we will briefly review this and explain the link to the Faster R-
CNN predictions).

To display the detected bands in DRAGen-RVE, several addi-
tional processing steps have to be undertaken, which are sche-
matically displayed in Figure 9. The procedure is as follows:
In the first step, the trained model is used to predict the martens-
ite bands in an arbitrary number of images. In the second step,
the band(s) is/are cropped out of the images based on the bound-
ing box predictions. A combined treatment of despeckling and
small hole filling is applied to these images to facilitate statistical
characterization of the bands. Thresholds of 1024 and 2048px are
used for this. These values are motivated by the fact that the later
RVE has much lower resolution than the real image (a common
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Figure 9. Schematic overview of the generation of statistical information about the martensite bands from the Faster R-CNN predictions. For more
detailed information, see Piitz et al.?? a) Step 1: Predict the martensite band(s) in the SEM images, record the bounding box coordinates further.
b) Step 2: Crop out the band, binarize the image, despeckle to remove small objects, and fill the small holes in the image. c) Step 3: Lay straight lines
through the band and save the length between the intersection as band thickness (orange lines).

resolution for a DRAGen-RVE is 2), and microstructural compo-
nents (holes, small islands) with sizes around about 1 pm are not
represented by the low resolution of the RVE. After this steps, an
image is obtained which contains only the martensite band. To
get a statistical representation of the bands, a method is used
which is adapted from the ASTM E1268-19, which deals with
the “bandiness” of microstructural morphology.”**

In this method, lines are drawn in y-direction (ND, sheet thick-
ness) of the images, and the intercepts are counted and used for
the thickness analysis of the bands. Figure 9¢) shows the proce-
dure. The result of this analysis is a table containing the band
thickness values based on the Faster R-CNN model, which
can then be used for the creation of RVE.

The different definitions will lead to different statistical thick-
ness distributions (see Section 2). The different distributions,
using a kernel density estimation (KDE) for displaying, can be
found in Figure 10. It can be seen that Def 1 skews the calculated
band thicknesses to lower values than Def 2. The mean thickness
for the bands calculated according to Def 1 is 2.96 pm while the
calculated mean thickness for Def 2 is 4.0 pm. Furthermore, Def
1 predicts on average more bands per 50 pm edge length,
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namely, 1.4 bands compared to 1.12 bands for Def 2. Another
difference is the percentage of martensite inside the bounding
boxes which contain the bands (for the whole microstructure
the percentage of martensite is around 32%). This value is
44% for Def 1% and 54% for Def 2. (These values are calculated
before the despeckling and hole filling operations.) In general,
these values indicate that Def 2 is the more strict definition which
labels bands that are more different from the rest of the micro-
structure than Def 1. This was already discussed in Section 5 in
relation to the results of the object detection.

7. Conclusions

In this article, a machine learning approach was developed to
separate martensite bands from martensite islands in a DP800
microstructure. For this, we fine tuned a Faster R-CNN object
detector on SEM-Inlens images using two different criteria to
define what a martensite band is. The main results can be sum-
marized as follows.1) A cross-validation shows that there are not
much problems with the scarcity of the data. Data augmentation
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Figure 10. KDEs for the calculated band thickness values for Def 1(left) and Def 2 (right). The vertical line shows the respective mean value.
a) Distribution of calculated band thickness values using KDE for Def 1. The mean value (vertical line) is 2.96 pm (b) Distribution of calculated band
thickness values using KDE for Def 2. The mean value (vertical line) is 4.0 ym.
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techniques help to tackle these problems and to contain tenden-
cies of overfitting. 2) The results are highly dependent on the
definition, which should be chosen with great care. The defini-
tion is best chosen on the goal of the investigation, for example, if
the bands should be displayed in an RVE of a specific size, the
required length of the bands should be chose, accordingly. In
addition, there is a difference of about 35% on average in the
statistically extracted band thickness. 3) The human bias is the
biggest problem in this kind of task and depends also on the cho-
sen definition.

In general, the results show that the proposed approach is
capable of separating the martensite bands from the remaining
microstructure due to arbitrary definitions in a good manner.
Also, the approach presented here allows the generation of sta-
tistical input data for RVE generation. In doing so, it enables a
separate consideration of bands and the rest of the microstruc-
ture and the resulting influences. Currently available approaches
only allow the general representation of microstructures with dif-
ferent degrees of bandiness. With our method, bands of different
definitions can be classified and described and their influence on
mechanical properties can be investigated.

Based on this, further improvements can be made to
strengthen the results of this study: One the one hand, expert
labeling of different experts for the respective microstructure
can be tested. The goal of this is to try to exclude “controversial”
structures out of the dataset and thereby to contain the human
bias which arises if one controversial structure is labeled as a
band and another similar structure is not. However, expert label-
ing should also be accompanied by some kinds of definitions to
avoid extremely inconsistent data if each expert is labeling after
his or her own definition.

Second, an attempt can be made to generalize the model, for
example, by having a look at different DP steel microstructures.
With this, maybe more clear criteria can be deducted from the
underlying data.

Finally, we only concentrated on 2D SEM images in this study,
for the sake of simplicity. In doing so, we ignored the nature of
the different bands in the third dimension (which is the trans-
versal direction of the sheet). If the study is extended to 3D
microstructural data, additional information can be deducted
to improve the consistency of the labeling. However, obtaining
large amounts of 3D microstructure data is very costly.
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